Advertisement
100% x 90
Trihybrid Cross Calculator

Trihybrid Cross Calculator

Generate 8×8 Punnett square for three-trait genetic crosses with probability analysis

Configure Trihybrid Cross

🚺 Mother's Traits

🚹 Father's Traits

Cross Summary

AaBbCc
Mother's Genotype
×
AaBbCc
Father's Genotype
64
Total Combinations
27
Unique Genotypes
8
Phenotype Classes

8×8 Punnett Square

♂️\♀️ABCABcAbCAbcaBCaBcabCabc
ABCAABBCCAABBCcAABbCCAABbCcAaBBCCAaBBCcAaBbCCAaBbCc
ABcAABBCcAABBccAABbCcAABbccAaBBCcAaBBccAaBbCcAaBbcc
AbCAABbCCAABbCcAAbbCCAAbbCcAaBbCCAaBbCcAabbCCAabbCc
AbcAABbCcAABbccAAbbCcAAbbccAaBbCcAaBbccAabbCcAabbcc
aBCAaBBCCAaBBCcAaBbCCAaBbCcaaBBCCaaBBCcaaBbCCaaBbCc
aBcAaBBCcAaBBccAaBbCcAaBbccaaBBCcaaBBccaaBbCcaaBbcc
abCAaBbCCAaBbCcAabbCCAabbCcaaBbCCaaBbCcaabbCCaabbCc
abcAaBbCcAaBbccAabbCcAabbccaaBbCcaaBbccaabbCcaabbcc

Scroll horizontally to view the complete 8×8 grid with all 64 combinations

Genotype Probabilities

AaBbCc12.50%
AABbCc6.25%
AaBBCc6.25%
AaBbCC6.25%
AaBbcc6.25%
AabbCc6.25%
aaBbCc6.25%
AABBCc3.13%
AABbCC3.13%
AaBBCC3.13%
AABbcc3.13%
AaBBcc3.13%
AAbbCc3.13%
AabbCC3.13%
Aabbcc3.13%
aaBBCc3.13%
aaBbCC3.13%
aaBbcc3.13%
aabbCc3.13%
AABBCC1.56%
AABBcc1.56%
AAbbCC1.56%
AAbbcc1.56%
aaBBCC1.56%
aaBBcc1.56%
aabbCC1.56%
aabbcc1.56%

Phenotype Ratios

A-B-C-
Dominant A, Dominant B, Dominant C
42.2%
A-B-cc
Dominant A, Dominant B, Recessive c
14.1%
A-bbC-
Dominant A, Recessive b, Dominant C
14.1%
aaB-C-
Recessive a, Dominant B, Dominant C
14.1%
A-bbcc
Dominant A, Recessive b, Recessive c
4.7%
aaB-cc
Recessive a, Dominant B, Recessive c
4.7%
aabbC-
Recessive a, Recessive b, Dominant C
4.7%
aabbcc
Recessive a, Recessive b, Recessive c
1.6%
Advertisement
100% x 250

Genetic Notation

A
Dominant allele
a
Recessive allele
AA: Homozygous dominant
Aa: Heterozygous
aa: Homozygous recessive

Trihybrid Cross Facts

Grid Size8 × 8
Total Boxes64
Max Genotypes27
Max Phenotypes8
Gamete Types8 each

Understanding Trihybrid Crosses

What is a Trihybrid Cross?

A trihybrid cross examines the inheritance of three different traits simultaneously. Each parent contributes one allele for each trait, resulting in complex inheritance patterns shown in an 8×8 Punnett square with 64 possible combinations.

Applications

  • Complex trait inheritance analysis
  • Plant and animal breeding programs
  • Genetic counseling for multiple traits
  • Research in quantitative genetics

How It Works

1. Gamete Formation

Each parent can produce up to 8 different gamete types (ABC, ABc, AbC, Abc, aBC, aBc, abC, abc)

2. Fertilization

Random combination of parental gametes creates 64 possible offspring genotypes

3. Probability Calculation

Frequency of each genotype determines inheritance probability for specific trait combinations

Advertisement
100% x 250