🔬

Miller Indices Calculator

Calculate interplanar distances and analyze crystal plane orientations

Miller Indices Calculator

Cubic unit cell lattice parameter in Angstroms

📐 Crystallographic Analysis

(100)
Miller Indices
3.5670
d-spacing (Å)
{100}
Plane Family
6
Equivalent Planes

Plane Type: Prismatic (parallel to yz)

Planar Density: 0.078595 atoms/Ų

Formula: d = a/√(h² + k² + l²)

Calculation: 3.567/√(1² + 0² + 0²) = 3.5670 Å

🔬 X-ray Diffraction Analysis

12.47°
Bragg Angle (θ)
24.94°
2θ Position
1.5406
Cu Kα (Å)
YES
Reflection Allowed

Bragg's Law: nλ = 2d sin(θ)

Calculation: θ = arcsin(1.5406/(2 × 3.5670)) = 12.47°

🧊 Crystal Structure Properties

Custom
Crystal System
1
Atoms/Unit Cell
6
Coordination #
52.4%
Packing Efficiency
45.38
Unit Cell Vol. (ų)
2.2033864379693143e+22
Atomic Density (cm⁻³)

👥 Equivalent Planes in Family {100}

(100)
(-100)
(010)
(0-10)
(001)
(00-1)

Multiplicity: 6 equivalent planes
Family notation: Curly braces {100} denote the complete family of equivalent planes

📊 Geometric Analysis

0.0°
Angle with X-axis
90.0°
Angle with Y-axis
90.0°
Angle with Z-axis

Normal Vector: [1, 0, 0]

Magnitude: √(1² + 0² + 0²) = 1.000

Example: Miller Indices for Diamond

Given Parameters

Material: Diamond (C)

Lattice constant: 3.567 Å

Miller indices: (111)

Crystal system: Diamond Cubic

Calculation

Formula: d₁₁₁ = a/√(h² + k² + l²)

Substitution: d₁₁₁ = 3.567/√(1² + 1² + 1²)

Calculation: d₁₁₁ = 3.567/√3 = 3.567/1.732

Result: d₁₁₁ = 2.059 Å

Notation Guide

📍

(hkl)

Individual plane

👥

{hkl}

Family of equivalent planes

🎯

[hkl]

Direction vector

🔄

⟨hkl⟩

Family of directions

h̄kl

Negative index (bar notation)

Common d-spacings

(100):3.567 Å
(110):2.522 Å
(111):2.059 Å
(200):1.784 Å
(220):1.261 Å
(311):1.075 Å

Crystal Systems

🧊

Cubic

a = b = c, α = β = γ = 90°

📐

Tetragonal

a = b ≠ c, α = β = γ = 90°

📏

Orthorhombic

a ≠ b ≠ c, α = β = γ = 90°

🔶

Hexagonal

a = b ≠ c, α = β = 90°, γ = 120°

Calculation Tips

💡

Miller indices are reciprocals of plane intercepts

📐

d-spacing formula: d = a/√(h² + k² + l²) for cubic

🔍

Higher indices mean smaller d-spacings

⚠️

Structure factor rules determine allowed reflections

🎯

Bragg's law: nλ = 2d sin(θ) for X-ray diffraction