Complex Number to Polar Form Calculator

Convert complex numbers from rectangular (a + bi) to polar form with step-by-step solutions

Example Complex Numbers

Complex Number Input

The real component of the complex number

The coefficient of the imaginary unit i

Complex Number:

z = 3 +4i
Angle unit:
Precision:

Polar Form Results

Magnitude (r)
5.0000
Modulus
Argument (φ)
0.9273 rad
Phase
Quadrant:Quadrant 1

Exponential Form

z = 5.0000 × exp(i×0.9273)

Trigonometric Form

z = 5.0000 × [cos(0.9273) + i×sin(0.9273)]

Step-by-Step Conversion

1

Given complex number: z = 3 +4i

2

Calculate magnitude: r = √(a² + b²) = √(3² + 4²) = √25.0000 = 5.0000

3

Calculate argument: φ = arctan(b/a) = arctan(4/3) = arctan(1.3333)

4

Argument: φ = 0.9273 radians = 53.1301°

5

Complex number is in quadrant 1

6

Polar form: z = 5.0000 × (cos(0.9273) + i×sin(0.9273))

7

Exponential form: z = 5.0000 × exp(i×0.9273)

Conversion Formulas

Magnitude

r = (a² + b²)

Argument

φ = atan2(b, a)

Polar Form

z = r × e^(iφ)

Complex Plane Quadrants

Quadrant I:a > 0, b > 0
Quadrant II:a < 0, b > 0
Quadrant III:a < 0, b < 0
Quadrant IV:a > 0, b < 0

Mathematical Symbols

iImaginary Unit
φArgument
πPi
Square Root
expExponential
atan2Two-arg Arctan

Understanding Polar Form of Complex Numbers

What is Polar Form?

The polar form represents a complex number using its distance from the origin (magnitude) and the angle it makes with the positive real axis (argument). This is particularly useful for multiplication and division of complex numbers.

Key Components

  • Magnitude (r): Distance from origin to the complex number
  • Argument (φ): Angle from positive real axis
  • Exponential form: r × e^(iφ)

Conversion Process

Step 1: Calculate Magnitude

Use Pythagorean theorem: r = √(a² + b²)

Step 2: Find Argument

Use atan2 function for correct quadrant: φ = atan2(b, a)

Step 3: Write Polar Form

Express as r × e^(iφ) or r × [cos(φ) + i×sin(φ)]

Special Cases and Important Examples

Pure Real Numbers

z = 5 + 0i

Magnitude: r = 5

Argument: φ = 0

Polar: 5 × e^(i×0)

Pure Imaginary Numbers

z = 0 + 3i

Magnitude: r = 3

Argument: φ = π/2

Polar: 3 × e^(i×π/2)

Unit Circle

z = 1 + i

Magnitude: r = √2

Argument: φ = π/4

Polar: √2 × e^(i×π/4)