Singular Values Calculator

Calculate singular values of any matrix using eigenvalue decomposition of ATA

Matrix Input

Enter Matrix Elements

Singular Values

Computed Singular Values (σ)

σ1
5.1167
σ2
1.9544

Matrix Properties

2×2
Dimensions
2
Rank
5.1167
Operator Norm
Symmetric

ATA Matrix

10
10
10
20

Eigenvalues of ATA: 26.1803, 3.8197

Singular values: σᵢ = √(λᵢ) where λᵢ are eigenvalues of ATA

Example Calculation

Sample Matrix A

Consider the 2×2 matrix:

A = [3 2]
    [1 4]

Calculation Steps

1. Calculate ATA = [10 14; 14 20]

2. Find eigenvalues of ATA: λ₁ ≈ 30.77, λ₂ ≈ -0.77

3. Singular values: σ₁ = √30.77 ≈ 5.55, σ₂ = √0.77 ≈ 0.88

4. The largest singular value gives the operator norm

Singular Values Properties

σ

Non-negative

σᵢ ≥ 0

Always real and positive

Universal

Any matrix has them

Square or rectangular

||

Operator Norm

σ₁ = ||A||₂

Largest singular value

Singular Values vs Eigenvalues

Singular values exist for any matrix

Always real and non-negative

Eigenvalues only for square matrices

For symmetric matrices: σᵢ = |λᵢ|

For diagonal matrices: σᵢ = |Aᵢᵢ|

Understanding Singular Values

What are Singular Values?

Singular values are the square roots of the eigenvalues of ATA, where AT is the transpose of matrix A. They provide important information about the geometric properties of linear transformations represented by the matrix.

Key Properties

  • Non-negativity: σᵢ ≥ 0 for all i
  • Ordering: σ₁ ≥ σ₂ ≥ ... ≥ σₙ ≥ 0
  • Matrix rank: Number of non-zero singular values
  • Operator norm: ||A||₂ = σ₁

Calculation Method

Step 1: Calculate AT (transpose of A)

Step 2: Compute ATA (matrix multiplication)

Step 3: Find eigenvalues λᵢ of ATA

Step 4: Singular values: σᵢ = √λᵢ

Applications

  • Image compression and processing
  • Data analysis and dimensionality reduction
  • Numerical analysis and condition numbers
  • Signal processing and filtering