Fermi Level Calculator

Calculate Fermi energy, temperature, velocity, and Fermi-Dirac distribution for electrons in materials

Calculate Fermi Level Parameters

Density: 8.47e+28 electrons/m³

Temperature in K: 300.00

Energy in eV: 0.000000

Fermi Level Parameters

7.033
Fermi Energy (eV)
81.6k
Fermi Temperature (K)
1.57
Fermi Velocity (10⁶ m/s)
13.59
Wave Vector (nm⁻¹)

Fermi-Dirac Distribution

100.000%
Probability of electron occupancy at 0 eV and 300 K

Formulas used:
• kF = (3π²n)^(1/3)
• EF = ℏ²kF²/(2me)
• vF = ℏkF/me
• TF = EF/kB
• f(E) = 1/(e^((E-EF)/(kBT)) + 1)

Constants: me = 9.109e-31 kg, ℏ = 1.055e-34 J⋅s, kB = 1.381e-23 J/K

Example Calculation

Copper Metal Example

Material: Copper (Cu)

Electron density: n = 8.47 × 10²⁸ electrons/m³

Temperature: T = 300 K (room temperature)

Calculated Parameters

kF = (3π² × 8.47×10²⁸)^(1/3) = 1.36 × 10¹⁰ m⁻¹

EF = ℏ²kF²/(2me) = 7.04 eV

TF = EF/kB = 81,700 K

vF = ℏkF/me = 1.57 × 10⁶ m/s

Common Metal Densities

Cu8.5e+28 e⁻/m³
Ag5.9e+28 e⁻/m³
Au5.9e+28 e⁻/m³
Al1.8e+29 e⁻/m³
Fe1.7e+29 e⁻/m³

Note: These values represent free electron densities in metals using the free electron model.

Fermi-Dirac Statistics

⚛️

Describes electron probability in energy states

🌡️

At T = 0 K, all states below EF are filled

📊

At E = EF, probability = 50% regardless of T

🔬

Applied to fermions (particles with half-integer spin)

Physics Notes

Fermi energy defines electron "sea" in metals

Higher density materials have higher Fermi energy

Fermi temperature is typically much higher than room temperature

Useful for understanding electrical and thermal properties

Understanding Fermi Level

What is the Fermi Level?

The Fermi level (or Fermi energy) is the highest occupied electron energy level at absolute zero temperature (0 K). It represents the chemical potential of electrons and is fundamental to understanding the electronic properties of materials, particularly metals and semiconductors.

Physical Significance

  • Determines electrical conductivity
  • Influences thermal properties
  • Defines electronic heat capacity
  • Critical for semiconductor design

Fermi Level Equations

kF = (3π²n)^(1/3)

EF = ℏ²kF²/(2me)

vF = ℏkF/me

TF = EF/kB

f(E) = 1/(e^((E-EF)/(kBT)) + 1)

  • kF: Fermi wave vector (m⁻¹)
  • EF: Fermi energy (J or eV)
  • vF: Fermi velocity (m/s)
  • TF: Fermi temperature (K)
  • n: Electron number density (electrons/m³)
  • f(E): Fermi-Dirac distribution function

Applications and Properties

Electronic Properties

Fermi level determines electrical conductivity, electron mobility, and carrier concentration in metals and semiconductors.

Thermal Properties

Electronic heat capacity and thermal conductivity are directly related to the density of states at the Fermi level.

Material Design

Understanding Fermi levels is crucial for designing electronic devices, solar cells, and thermoelectric materials.