Inverting Buck-Boost Converter Calculator

Calculate duty cycle and inductance for inverting buck-boost DC-DC converters

Converter Parameters

DC input voltage to the converter

Desired DC output voltage (inverted polarity)

MOSFET switching frequency

Maximum inductor current ripple

Calculation Results

0
Duty Cycle (D)
Unknown
0
Inductance (L)
Required inductor value
0
On-Time Interval (Ton)
0
Inductance (mH)

Duty Cycle Formula: D = Vout / (Vin + Vout)

Inductance Formula: L = D × Vin / (fsw × Iripple)

Output Polarity: Inverted relative to input voltage

Converter Analysis

Example Calculation

Buck-Boost Converter Design

Input Voltage: Vin = 18V

Output Voltage: Vout = -12V

Switching Frequency: fsw = 200kHz

Ripple Current: Iripple = 200mA

Step-by-Step Calculation

D = |Vout| / (|Vin| + |Vout|) = 12 / (18 + 12) = 0.4 = 40%

L = D × Vin / (fsw × Iripple) = 0.4 × 18 / (200×10³ × 0.2) = 180μH

Result: D = 40% (Buck Mode), L = 180μH

Converter Components

Q

MOSFET Switch

Controls power transfer

Switching transistor Q1

L

Inductor

Energy storage element

L1 - calculated value

D

Freewheeling Diode

Current flow control

D1 - rectifier diode

C

Capacitors

Input/output filtering

Cin & Cout

Design Tips

Output voltage polarity is inverted

Can step up or step down voltage

Higher efficiency than linear regulators

Consider EMI and control complexity

Understanding Inverting Buck-Boost Converters

What is an Inverting Buck-Boost Converter?

An inverting buck-boost converter is a DC-DC power converter that can either step up (boost) or step down (buck) the input voltage while inverting its polarity. Unlike non-inverting converters, the output voltage has opposite polarity to the input.

Key Characteristics

  • Inverted output voltage polarity
  • Can step up or step down voltage
  • Single inductor energy storage
  • Continuous or discontinuous conduction

Key Formulas

D = |Vout| / (|Vin| + |Vout|)

L = D × Vin / (fsw × Iripple)

  • D: Duty cycle (0 to 1)
  • Vin, Vout: Input and output voltages
  • L: Inductance (H)
  • fsw: Switching frequency (Hz)
  • Iripple: Maximum ripple current (A)

Note: Buck mode (D < 0.5), Boost mode (D > 0.5)

Applications

  • Negative Voltage Generation: Creating negative rails from positive input
  • Dual Polarity Supplies: Bipolar power supply systems
  • Battery Powered Systems: Wide input voltage range applications
  • Automotive Electronics: Variable battery voltage systems

Advantages vs Disadvantages

Advantages:

  • • High efficiency (80-95%)
  • • Compact design
  • • Wide voltage conversion range
  • • Inverted output capability

Disadvantages:

  • • EMI generation
  • • Complex control circuits
  • • Discontinuous input current
  • • Lower efficiency at extreme duty cycles