Magnetic Moment Calculator

Calculate atomic magnetic moments, spin contributions, and current loop magnetic dipoles

Calculate Magnetic Moment

Total spin angular momentum (multiples of 0.5)

Total orbital angular momentum (integers)

Must satisfy |L-S| ≤ J ≤ L+S

Magnetic Moment Results

Landé g-factor
2.0000
Dimensionless
Magnetic Moment
1.732 μB
Bohr magnetons
Bohr magnetons
1.732
J/T
1.606 × 10^-23
A⋅m²
1.606 × 10^-23
erg/G
1.606 × 10^-20
Nuclear magnetons
9.433 × 10^-4

Bohr magneton: μB = 9.274 × 10^-24 J/T

Formula: μ = gJ × μB × √(J(J+1)), where gJ = 3/2 + (S(S+1) - L(L+1))/(2J(J+1))

Common Elements

Hydrogen (H)
Single electron in 1s orbital
S=0.5, L=0, J=0.5
Lithium (Li)
One unpaired electron in 2s orbital
S=0.5, L=0, J=0.5
Carbon (C)
Two unpaired electrons in 2p orbitals
S=1, L=1, J=0
Nitrogen (N)
Three unpaired electrons in 2p orbitals
S=1.5, L=0, J=1.5
Oxygen (O)
Two unpaired electrons in 2p orbitals
S=1, L=1, J=2
Iron (Fe³⁺)
Five unpaired d electrons
S=2.5, L=0, J=2.5

Example: Hydrogen Atom

Ground State Hydrogen

Configuration: Single electron in 1s orbital

Quantum numbers: S = 1/2, L = 0, J = 1/2

Physical meaning: Only spin contributes to magnetic moment

Calculation

gJ = 3/2 + (S(S+1) - L(L+1))/(2J(J+1))

gJ = 3/2 + (0.75 - 0)/(2 × 0.75) = 1.5 + 0.5 = 2.0

μ = gJ × √(J(J+1)) × μB = 2.0 × √0.75 × μB

μ = 1.732 μB

Magnetic Constants

Bohr Magneton (μB)
9.274 × 10^-24 J/T
Electron g-factor (gS)
2.00232
Orbital g-factor (gL)
1
Nuclear Magneton (μN)
5.051 × 10^-27 J/T

Quantum Numbers

Spin (S)
Intrinsic angular momentum
Electrons: ±1/2 each
Orbital (L)
Orbital angular momentum
s=0, p=1, d=2, f=3
Total (J)
Vector sum of L and S
|L-S| ≤ J ≤ L+S

Magnetism Tips

🧲

Magnetic moment arises from spin and orbital motion of electrons

🧲

Landé g-factor accounts for relativistic effects

🧲

Bohr magneton is the natural unit for atomic magnetic moments

🧲

Unpaired electrons contribute most to magnetic properties

Understanding Magnetic Moments

Origins of Magnetic Moments

Atomic magnetic moments arise from three main sources: electron spin, orbital motion of electrons, and nuclear magnetic moments. Electron contributions dominate in most atoms, with spin being the most significant factor.

Quantum Mechanical Nature

  • Electron spin is an intrinsic quantum property, not actual spinning
  • Orbital motion is quantized into discrete energy levels
  • Total angular momentum combines spin and orbital contributions
  • Magnetic moments are measured in Bohr magnetons (μB)

Mathematical Framework

μ = gJ × μB × √(J(J+1))

gJ = 3/2 + (S(S+1) - L(L+1))/(2J(J+1))

  • μ: Magnetic moment magnitude
  • gJ: Landé g-factor (dimensionless)
  • μB: Bohr magneton = 9.274 × 10⁻²⁴ J/T
  • J: Total angular momentum quantum number
  • S, L: Spin and orbital quantum numbers

Note: The Landé g-factor accounts for the different magnetic properties of spin and orbital angular momentum, incorporating relativistic effects.

Applications and Significance

Magnetic Resonance

NMR and ESR spectroscopy rely on magnetic moments of nuclei and electrons to probe molecular structure and dynamics.

Magnetic Materials

Understanding atomic magnetic moments is crucial for designing permanent magnets, magnetic storage devices, and spintronics applications.

Quantum Computing

Electron and nuclear spins serve as qubits in quantum computers, with magnetic moments enabling quantum state manipulation and readout.