Mohr's Circle Calculator

Calculate principal stresses, maximum shear stress, and perform 2D stress analysis

2D Stress State

Stress Units

Normal Stresses

MPa

Normal stress acting perpendicular to X-face

MPa

Normal stress acting perpendicular to Y-face

Shear Stress

MPa

Shear stress acting on X-Y plane

Units for angle results

Material Reference (Optional)

MPa

For safety factor calculations

Mohr's Circle Analysis Results

Maximum Principal Stress
0.00
σ₁ (MPa)
Minimum Principal Stress
0.00
σ₂ (MPa)
Maximum Shear Stress
0.00
τmax (MPa)
von Mises Stress
0.00
σvM (MPa)
Mean Stress
0.00
σmean (MPa)
Angle of Orientation
0.00
θ (deg)
Circle Center
0.00
Center σ (MPa)
Circle Radius
0.00
R (MPa)
Tresca Stress
0.00
Maximum shear criterion (MPa)
Hydrostatic Stress
0.00
σhyd (MPa)

Formulas used:

Principal stresses: σ₁,₂ = (σxx + σyy)/2 ± √[((σxx - σyy)/2)² + τxy²]

Maximum shear stress: τmax = (σ₁ - σ₂)/2 = √[((σxx - σyy)/2)² + τxy²]

von Mises stress: σvM = √(σ₁² - σ₁σ₂ + σ₂²)

Angle of orientation: 2θ = arctan(2τxy/(σxx - σyy))

Example Calculation

2D Stress State Analysis

Given: σxx = 100 MPa, σyy = 40 MPa, τxy = 30 MPa

Center: (σxx + σyy)/2 = (100 + 40)/2 = 70 MPa

Radius: √[((100-40)/2)² + 30²] = √[30² + 30²] = 42.43 MPa

Principal Stresses

σ₁ = 70 + 42.43 = 112.43 MPa (Maximum)

σ₂ = 70 - 42.43 = 27.57 MPa (Minimum)

τmax = 42.43 MPa

θ = 0.5 × arctan(2×30/(100-40)) = 22.5°

von Mises: σvM = √(112.43² - 112.43×27.57 + 27.57²) = 98.7 MPa

Stress Components

Normal Stress (σ)
Perpendicular to surface
Tension (+) or Compression (-)
Shear Stress (τ)
Parallel to surface
Causes deformation

Principal Stresses

σ₁ (Maximum)Largest principal stress
σ₂ (Minimum)Smallest principal stress
τmax(σ₁ - σ₂)/2
θ (Orientation)Principal plane angle

Failure Criteria

von MisesDistortion energy
TrescaMaximum shear
Maximum NormalBrittle materials

Typical Yield Strengths

Steel200-800 MPa
Aluminum50-400 MPa
Concrete3-8 MPa
Wood20-60 MPa

Analysis Tips

Principal stresses are at 45° to max shear

No shear stress on principal planes

Circle center = average normal stress

Circle radius = maximum shear stress

Use von Mises for ductile materials

Understanding Mohr's Circle

What is Mohr's Circle?

Mohr's Circle is a graphical representation of the 2D stress state at a point in a material. It provides a visual method for analyzing stress transformations and determining principal stresses, maximum shear stresses, and the orientation of critical planes. The circle is plotted with normal stress (σ) on the x-axis and shear stress (τ) on the y-axis.

Key Applications

  • Structural Design: Determining critical stress conditions in beams, shafts, and pressure vessels
  • Material Failure: Predicting failure modes using various failure criteria
  • Safety Analysis: Calculating safety factors and stress concentrations
  • Optimization: Finding optimal orientations to minimize stress

Principal Stress Formulas

Maximum & Minimum Principal Stresses

σ₁ = (σxx + σyy)/2 + √[((σxx - σyy)/2)² + τxy²]

σ₂ = (σxx + σyy)/2 - √[((σxx - σyy)/2)² + τxy²]

σ₁ = maximum, σ₂ = minimum principal stress

Maximum Shear Stress

τmax = (σ₁ - σ₂)/2

τmax = √[((σxx - σyy)/2)² + τxy²]

Maximum shear stress equals circle radius

von Mises Stress

σvM = √(σ₁² - σ₁σ₂ + σ₂²)

Equivalent stress for ductile material failure

Drawing Mohr's Circle

Step 1: Plot Points

Plot points A(σyy, τxy) and B(σxx, -τxy) on σ-τ axes

Step 2: Find Center

Center is at ((σxx + σyy)/2, 0) on σ-axis

Step 3: Draw Circle

Circle passes through points A and B with calculated center

Step 4: Read Results

Principal stresses are where circle intersects σ-axis

Failure Criteria

von Mises Criterion

Best for ductile materials (metals). Failure when σvM ≥ σyield

Tresca Criterion

Maximum shear stress theory. Failure when τmax ≥ σyield/2

Maximum Normal Stress

For brittle materials. Failure when σ₁ ≥ σult or σ₂ ≤ -σult