Principal Stress Calculator

Calculate maximum and minimum principal stresses and orientations

Stress Analysis Configuration

2D Stress State: Plane stress analysis with normal and shear components

Stress Components

Output Units

Principal Stress Results

Maximum Principal Stress (σmax)
18.00
MPa
Minimum Principal Stress (σmin)
2.00
MPa
Principal Angle (θ)
45.00
deg
Maximum Shear Stress (τmax)
8.00
MPa

Material Properties

Name: Mild Steel

Category: Metals

Description: Common structural steel with good ductility

Yield Strength: 250 MPa

Tensile Strength: 400 MPa

Compressive Strength: 400 MPa

Principal Stress Formulas:

σmax = (σx + σy)/2 + √[((σx - σy)/2)² + τxy²]

σmin = (σx + σy)/2 - √[((σx - σy)/2)² + τxy²]

θ = ½ arctan(2τxy/(σx - σy))

τmax = √[((σx - σy)/2)² + τxy²]

Where: σ = normal stress, τ = shear stress, θ = principal angle

Example: Biaxial Stress State

Given Values

Horizontal Normal Stress (σx): 10 MPa

Vertical Normal Stress (σy): 10 MPa

Shear Stress (τxy): 8 MPa

Calculation Steps

Center stress = (σx + σy)/2 = (10 + 10)/2 = 10 MPa

Radius = √[((σx - σy)/2)² + τxy²] = √[0² + 8²] = 8 MPa

σmax = 10 + 8 = 18 MPa

σmin = 10 - 8 = 2 MPa

θ = ½ arctan(2×8/(10-10)) = 45°

Results

The maximum principal stress is 18 MPa and minimum is 2 MPa, occurring at 45° to the horizontal plane.

Analysis Types

2D Stress State
Basic principal stress analysis
σmax, σmin, θ
Mohr's Circle
Complete stress transformation
von Mises, Tresca
Safety Analysis
Failure criterion evaluation
Safety factors

Typical Yield Strengths

Mild Steel250 MPa
High Strength Steel550 MPa
Aluminum 6061-T6275 MPa
Titanium Ti-6Al-4V880 MPa
Concrete25 MPa

Failure Criteria

von Mises:√(σ₁² + σ₂² - σ₁σ₂) ≤ σy
Tresca:|σ₁ - σ₂| ≤ σy
Max Principal:max(|σ₁|, |σ₂|) ≤ σy
σ₁, σ₂ = principal stresses
σy = yield strength

Physics Tips

Principal stresses occur on planes with zero shear

Maximum shear stress = (σmax - σmin)/2

Principal planes are 90° apart

von Mises criterion works well for ductile materials

Brittle materials fail along principal planes

Understanding Principal Stresses

What are Principal Stresses?

Principal stresses are the normal stresses that occur on planes where shear stress is zero. They represent the maximum and minimum normal stresses at a point and are fundamental for understanding material failure. The principal plane orientations are critical for determining where cracks might initiate.

Key Formulas

σmax = (σx + σy)/2 + √[((σx - σy)/2)² + τxy²]

σmin = (σx + σy)/2 - √[((σx - σy)/2)² + τxy²]

θ = ½ arctan(2τxy/(σx - σy))

Where σ = normal stress, τ = shear stress, θ = principal angle

Engineering Applications

Failure Analysis

Predict crack initiation and propagation direction

Material Selection

Choose materials based on stress capacity

Design Optimization

Orient components to minimize critical stresses

Failure Criteria

von Mises Criterion

Best for ductile materials like metals

Tresca Criterion

Maximum shear stress theory, conservative

Maximum Principal Stress

Suitable for brittle materials like ceramics

Mohr's Circle Relationships

Center Point

(σx + σy)/2

Circle Radius

√[((σx - σy)/2)² + τxy²]

Maximum Shear

Equals the circle radius