Thermal Stress Calculator

Calculate thermal stress due to temperature changes in materials and structures

Calculate Thermal Stress

Material's elastic modulus

µm/m/K

Linear thermal expansion coefficient

Starting temperature

Final temperature

Thermal Stress Results

0.00
Thermal Stress (MPa)
30.0
Temperature Change (K)
0.0
Thermal Strain (µε)
0.00
Dimensional Change (mm/m)

Formula: σt = E × α × ΔT

Stress Type: Tensile (expansion)

Analysis & Recommendations

Example Calculation

Copper Bar Heating Example

Material: Copper bar

Young's Modulus (E): 110 GPa

Thermal Expansion Coefficient (α): 17 × 10⁻⁶ K⁻¹

Initial Temperature: 20°C

Final Temperature: 50°C

Temperature Change (ΔT): 30 K

Calculation

σt = E × α × ΔT

σt = 110 × 10⁹ Pa × 17 × 10⁻⁶ K⁻¹ × 30 K

σt = 110 × 17 × 30 Pa

σt = 56.1 MPa

Common Material Properties

MaterialE (GPa)α (µm/m/K)
Aluminum6823.1
Brass10619.0
Copper11017.0
Gold77.214.0
Silver7218.0
Gunmetal10319.8
Nickel17013.0
Lead1329.0
Titanium1168.6
Tungsten4054.5
Concrete2710.0
Carbon Steel20011.7
Stainless Steel19317.3
Cast Iron10010.8
Bronze10318.0

Thermal Stress Tips

Positive ΔT causes tensile stress (expansion)

Negative ΔT causes compressive stress (contraction)

Consider expansion joints in design

Monitor cyclic thermal loading

Use low expansion materials for stability

Understanding Thermal Stress

What is Thermal Stress?

Thermal stress occurs when a material is subjected to temperature changes that cause expansion or contraction. When this thermal deformation is constrained, internal stresses develop within the material. These stresses can lead to structural failure if not properly considered in design.

Common Examples

  • Railway track buckling in hot weather
  • Concrete pavement cracking
  • Power line sagging in summer
  • Engine component deformation

Formula Explanation

σt = E × α × ΔT

  • σt: Thermal stress (Pa)
  • E: Young's modulus (Pa)
  • α: Coefficient of thermal expansion (K⁻¹)
  • ΔT: Temperature change (K)

Key Factors

  • Material Properties: E and α values vary significantly
  • Temperature Range: Larger ΔT creates higher stress
  • Constraint: Stress only occurs if expansion is restricted

Engineering Applications

🏗️ Structural Engineering

  • • Bridge expansion joints
  • • Building thermal movements
  • • Pipeline design
  • • Concrete structures

🔧 Mechanical Engineering

  • • Engine components
  • • Heat exchangers
  • • Turbine blades
  • • Pressure vessels

⚡ Electronics

  • • Semiconductor devices
  • • PCB assemblies
  • • Thermal management
  • • Package reliability