Y+ Calculator

Calculate dimensionless wall distance for CFD analysis and boundary layer modeling

Calculate Y+ Wall Distance

Fluid velocity far from the boundary

Default: 1.205 kg/m³ (air at 15°C)

Default: 0.01805 mPa·s (air at 15°C)

Characteristic length of the surface

Target dimensionless wall distance

Approximation method for skin friction coefficient

Y+ Calculation Results

0.0334
Wall Distance (mm)
0.4487
Friction Velocity (m/s)
0.2426
Wall Shear Stress (Pa)
Reynolds Number
667590
Skin Friction Coefficient
0.004026

Y+ Formula: y+ = y × ρ × u* / μ

Wall Distance: y = y+ × μ / (ρ × u*)

Friction Model: Schlichting: [2log₁₀(Re) - 0.65]^(-2.3)

Y+ Category: Buffer Layer

Buffer Layer: Transition region between viscous and log-law regions

Y+ Range Guidelines

y+ < 1Viscous Sublayer (High accuracy)
1 ≤ y+ ≤ 5Buffer Layer (Transition)
5 < y+ ≤ 30Log-Law Region (Wall functions)
y+ > 30Outer Layer (Poor accuracy)

Example Calculation

Air Flow Over Flat Plate

Freestream Velocity: 10 m/s

Fluid: Air (ρ = 1.205 kg/m³)

Dynamic Viscosity: 0.01805 mPa·s

Boundary Layer Length: 1 m

Target y+: 1

Step-by-Step Solution

1. Re = (1.205 × 10 × 1) / 0.01805 = 667,590

2. Cf = [2log₁₀(667,590) - 0.65]^(-2.3) = 0.004026

3. τw = 0.004026 × 0.5 × 1.205 × 10² = 0.2426 Pa

4. u* = √(0.2426 / 1.205) = 0.4487 m/s

5. y = 1 × 0.01805 / (1.205 × 0.4487) = 0.033 mm

Friction Models

Schlichting

[2log₁₀(Re) - 0.65]^(-2.3)

Prandtl (1927)

0.074 × Re^(-0.2)

Granville (1977)

Complex function with log terms

Kempf-Karman

0.055 × Re^(-0.182)

Boundary Layer Regions

Viscous Sublayer

Linear velocity profile

Buffer Layer

Transition region

Log-Law Region

Logarithmic profile

Outer Layer

Wake region

CFD Applications

Mesh sizing for boundary layer

Wall function implementation

Turbulence model selection

Heat transfer calculations

Understanding Y+ and Boundary Layer Theory

What is Y+?

Y+ (y-plus) is a dimensionless wall distance parameter crucial in CFD analysis. It represents the distance from the wall normalized by viscous length scale, helping determine appropriate mesh sizing and turbulence modeling strategies.

Boundary Layer Structure

  • Viscous Sublayer: Dominated by viscous forces
  • Buffer Layer: Transition between viscous and inertial
  • Log-Law Region: Turbulent shear stress dominates
  • Outer Layer: Wake region with reduced gradients

Mathematical Formulation

y+ = y × ρ × u* / μ

u* = √(τw / ρ)

τw = Cf × 0.5 × ρ × U²

  • y: Physical distance from wall (m)
  • ρ: Fluid density (kg/m³)
  • u*: Friction velocity (m/s)
  • μ: Dynamic viscosity (Pa·s)
  • τw: Wall shear stress (Pa)
  • Cf: Skin friction coefficient (-)

CFD Best Practice: Use y+ < 1 for near-wall modeling or 30 < y+ < 300 for wall functions.